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Motivation: Analysis of bubble growth in 
ITER-grade W samples exposed in TPE 
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exposure 

type 

ion energy 

[eV] 

duration 

[min] 

flux (Γi) 
[m-2 s-1] 

fluence (Φ) 

[m-2] 

LF 100 60 4.9×1021 1.8×1025 

HF 100 120 1.5×1022 1.1×1026 

• Precipitation affects 

migration through material 

• Bubble growth depends on 

microstructure 

• Growth mechanisms critical 

to developing realistic 

models 

• TPE plasma 

exposures at INL 

• Microscopy at 

Shizuoka 

TPE target during plasma exposure 



Retention measurements correspond closely 
with those obtained in other laboratories 
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Previous work by Alimov et al: 

 

• ITER-grade W 

• E = 38 eV 

• Φ = 1022 D m-2 s-1 

 

Comparable exposure conditions 
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V. Kh. Alimov, et al. J. Nucl. Mater. 420 (2012) 519. 



Retention measurements correspond closely 
with those obtained in other laboratories 
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Previous work by Alimov et al: 

 

• ITER-grade W 

• E = 38 eV 

• Φ = 1022 D m-2 s-1 

 

Comparable exposure conditions 

V. Kh. Alimov, et al. J. Nucl. Mater. 420 (2012) 519. 

TPE retention measurements: 

 

• Correspond closely with 

Toyama/IPP meas. 

• Confirm accepted retention 

temp. dependence. 



Surface morphology variation  
with temperature 
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Key features: 

 

• Non-uniform 

coverage 

 

• Bubbles are 

small (<10 μm 

dia.) 

compared with 

warm-rolled W 

material. 

 

• Absent at 

temperature 

extrema. 

 



EBSD measurements reveal  
dependence on grain orientation 
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• Grain orientation indicated by inverse pole plot. 

• Bubbles visible on grains with <111> and <110> directions 

aligned normal to surface 

• Considerable distortion within individual grains 

• Un-annealed sample showed increased distortion 

 

SEM image of the same area 



Atomic force microscopy reveals 
details of surface structure 
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(b)

• Atomic force microscopy provides 

information on the shape of the 

deformed surface. 

 

• Individual bubbles identified and 

analyzed automatically. 

corresponding 

bubble size 

distributions 
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What bubble growth mechanisms are active 
in W during plasma exposure? 
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near-surface plastic 

deformation 
dislocation loop punching vacancy clustering 

Figures from: J. B. Condon & T. Schober, J. Nucl. Mater. 207 (1993) 1. 



Far from the free surface,  
dislocation loop punching is favored 
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Three bulk precipitate growth 

mechanisms considered: 

– Dislocation loop punching 

 

 

– Griffith nano-crack extension 

 

 

 

– Dislocation dipole expansion 
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Based on methods developed in: 

D. F. Cowgill, “Physics of He Platelets in 

Metal Tritides,” in Effects of Hydrogen on 

Materials (2009). 
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Near the free surface, bubbles  
may grow by crack extension 
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Stress calculations based on 

calculations by K. Wan & Y. Mai, Acta 

metall. mater. 43 (1995) 4109. 

Crack extension competitive 

with loop punching near 

surface: 

 

 

 

Limitations: 

– Correction for thick blisters 

– Effect of plasticity (blunting of 

crack tip) 

– Hydrogen effects 
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Bubble volumes measured with AFM 
correlate well with blister model 

11 

0.1

1

10

b
u

b
b

le
 v

o
lu

m
e

 (
V

0
) 

[
m

3
]

543210

req [m]

 131 °C

 231 °C

𝑉 =  𝑦 𝑟 2𝜋𝑟𝑑𝑟 =  𝐶1𝜋𝑎
2𝑦𝑐 

K. Wan & Y. Mai, Acta metall. mater. 43 (1995) 4109. 

Volume modeled using blister test 

for thin film adhesion: 



Bubble volumes measured with AFM 
correlate well with deflection model 
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Volume modeled using blister test 

for thin film adhesion: 



Diffusion and trapping modeled with a 
continuum-scale approach 
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Diffusion: 1-D, uniform temperature: 

 

𝜕𝑢(𝑥, 𝑡) 𝜕𝑡 
= 𝐷 𝑡 𝜕2𝑢 𝑥, 𝑡 𝜕𝑥2 − 𝑞𝑇 𝑥, 𝑡 − 𝑞𝐵(𝑥, 𝑡) 

Point defects: 

• 1.4 eV saturable traps, no nucleation.   

• Used approach of Ogorodnikova [J. Nucl. 

Mater. (2009)] to address trapping and release. 

Bubbles: 

Modeled using a approach of Mills [J. Appl. Phys. 

(1959)]. 

 

𝑞𝐵(𝑥, 𝑡) = 𝜕𝑢𝐵(𝑥, 𝑡) 𝜕𝑡 
= 4𝜋𝐷 𝑡 𝑟𝐵 𝑥, 𝑡 𝑁𝐵 𝑥 [𝑢 𝑥, 𝑡 − 𝑢𝑒𝑞 𝑥, 𝑡 ] 

½ H2 

void 

Hm=0.39 eV  

vacancy 

Enthalpies for H migrating through W. 

 

Dissolution of H in W is highly 

endothermic. 

Hads=0.5 eV  

Hs= 

1.04 eV  

Hs=1.43 eV  



H equation of state takes into  
account non-ideal gas effects 
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DATA FOR HYDROGEN
 
Experimental:

 Michels (1959)

 Mills (1977)

 Mao (1988)

 
Curve Fits:

 ideal gas
 Shimizu (1981)
 Loubeyre (1996)
 Tkacz (2002) 
 San Marchi (2007)

H2 solidifiesH2 equation of state (EOS): 

• P > 1 GPa expected within 

small bubbles.   

• At 300 K, H2 solidifies at p=5.7 

GPa.   

• Tkacz’s [J. Alloys & 

Compounds (2002)] EOS to 

provide the best fit: 

 

𝑣 = 𝐴𝑝−1/3 + 𝐵𝑝−2/3 + 𝐶𝑝−4/3

+ 𝐷 + 𝐸𝑇 𝑝−1 
 

•   San Marchi’s simplified EOS 

better at low pressure: 

 

𝑣 =
𝑅𝑇

𝑝
+ b 



When is bubble growth favorable? 

15 

Calculation of equilibrium press. 

When is precipitate in equilibrium with mobile 

conc.? 

• Equate chemical potentials of gas and 

solution phase.   

• Calculate fugacity to account for non-ideal 

behavior: 

ln 𝑓 𝑝 =  
𝑣 𝑝, 𝑇

𝑅𝑇
−
1

𝑝
𝑑𝑝

𝑝

0

 

• Equilibrium conc. given by: 

𝑢𝑒𝑞 = 𝑓𝑆0exp (−𝐻𝑆 𝑅𝑇)  

So and Hs from Frauenfelder [JVST, 1969]. 
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Summary of surface morphology findings 
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• ITER-grade W sample exposed in TPE show similar 

retention to Toyama/IPP studies. 

• Analysis of surface morphology: 

– XPS shows implanted C reduced considerably 

– SEM/EBSD illustrate non-uniform bubble growth over surface 

– Bubble grow on (110) and (111) crystal planes 

– AFM analysis provide bubble volumes 

• Modeling of bubbles: 

– Thin film adhesion model adapted to model blister grown on 

tungsten. 

– Model reproduces bubble sizes observed with AFM 
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